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believed that t h e  asymptotic expansion f o r  la rge  Reynolds 

For -..e past  f e w  y e a s  it has been ra ther  genera 

number of t he  Navier-Stokes solution f o r  laminar viscous 

incompressible flow over a semi-infinite f la t  p l a t e  immersed 

i n  a uniform stream must contain terms involving the  loga- 

rithm of Reynolds number. Goldstein1J2 and Imi3 have con- 

cluded tha t ,  i n  order t o  satisfy the  condition of exponential 

decay of v o r t i c i t y  through the boundary layer,  t he  solution, 

exhibited, f o r  example, by the loca l  sk in- f r ic t ion  coeff ic ient  

Cf = -r0/(1/2)pu",, where i s  the  shear s t r e s s  at  the  p la te ,  

must have the  form (nonanalytic with respect t o  RX-'I2 at  

R, = 0 3 ) :  

-r0 

where R, i s  t h e  loca l  Reynolds number, UZ/v. The "smaller 

order" symbol i n  t h e  expression A = o(B) as E + 0 means 

$9 (A/B) = 0. 

t o  within an undetermined constant t o  t h i s  order has not been 

The f ac t  t ha t  their  solutions a re  given only  

sa t i s f ac to r i ly  explained, although it has been discussed by a 
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A method of asymptotic expansions fo r  solving singular 

I / '  

perturbation problems has been developed' and may be con- 

sidered t o  be a new approach t o ,  and a modification and 

extension of,  t h e  method of inner and outer expansions 

developed by Kaplun, Lagerstrom, and Cole. -lo Application 

of the  method i n  Ref. 5 t o  the f l a t -p l a t e  problem described 

above has led t o  the  systematic determination of t he  expan- 

s ion solution about Rx = 00 which is  completely determined 

t o  any order. 

mic terms. 

The solut ion does not contain any logar i th-  

It not only satisfies the NavierStokes equa- 

t ions  and the  usually imposed boundary conditions which define 

t h e  problem, but a l so  s a t i s f i e s  automatically t h e  require- 

ment of exponential decay of vo r t i c i ty .  Sa t i s fac t ion  of t he  

l a t t e r  condition was forced i n  the  solutions of Goldsteinl,* 

and Imai3 by the  otherwise a rb i t ra ry  addition of t he  logari th-  

mic term. The expansion solution given i n  R e f .  5 i n  terms 

of the "displacement variable" R z  = Rx + P2 ( P  = 0.8603935) is  

believed t o  be va l id  (convergent) a r b i t r a r i l y  close t o  the  

leading edge. 

It i s  t h e  purpose of t h i s  note t o  explain and c l a r i fy  

the  reasons why t he  logarithmic terms should not be present 

i n  the  expansion solution f o r  large Rx ( i .e . ,  expansion about 

Rx-1 /2  = 0) 

Fi r s t ,  it must be pointed out tha t ,  although several  

authors have a t t r i bu ted  the "need" for log terms in,  and 

thus a nonanalytic (with respect t o  R,-lj2) form of, t he  

expansion solut ion f o r  large R, t o  t h e  s ingular i ty  at  the  
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leading edge of t h e  p la te ,  t he  s ingular i ty  at  R, = 0 need not 

a f fec t  t h e  form of the  expansion about 

Thus, even though Cf i s  nonanalytic with respect t o  R, (or  

even RX1l2) at R, = 0, i f  it i s  analyt ic  w i t h  respect t o  

z I RX-‘l2 at z = 0, it can be expanded i n  a Maclaurin series 

about z = 0 i n  t h e  form 

R, = co (R,-1’2 = 0) .  

(where it i s  known from the  Blasius solution t o  f i rs t -order  

boundary-layer theory tha t  a. = 0 and a1 = 0.66411). 

Seconu- ,  we consider now t h e  poss ib i l i ty  t ha t  the solution 

at Rx = 03 

so t h a t  t h e  asymptotic expansion would contain log terms. 

Ref. 5 t h e  solut ion was assumed t o  be analyt ic  w i t h  respect t o  

RX-l12 a t  Rx = 03. 

terms required fo r  a va l id  solution could have been omitted by 

assuming t h e  analyt ic  form o f  solution. 

(which i s  included i n  a large class) they could not, as w i l l  be 

i s  nonanalytic by v i r t u e  of a logarithmic s ingular i ty ,  

I n  

The question then arises whether logarithmic 

For the  present problem 

Shown 

The dimensionless stream function JI i s  defined by 

u = a$/& and v = -&#/ax where u and v are the  velocity 

components made dimensionless with respect t o  t h e  free-stream 

veloci ty  U, where x and y are t h e  coordinates pa ra l l e l  and 

normal t o  t h e  p la te  made dimensionless w i t h  respect t o  some 

arb i t ra ry  but fixed length L, and where 3 = lrr vu/ ’-. v - - ALA,* . .  p--/v 

It i s  known t h a t  R 

l e m  by l e t t i n g  

Eqs. (248), (249), and (252)) .  

can be eliminated completely from t h e  prob- 
- 

= Rq, X = Rx = R,, and = Ry (see Ref. 5 ,  

Hence, even though R may be 
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separated from x and y 

expansion as 

obtainable from 

y, and R occur only i n  t h e i r  product forms such t h a t  F?k i s  

a function of (Rx, Ry). For example, t he  loca l  skin-fr ic t ion 

coefficient is, by defini t ion 

i n  order t o  f ind  the  asymptotic 

R + a, the  final resu l t  f o r  JI, and a l l  r e su l t s  

I#, must be reducible t o  a form where I#, x, 

cf = (2/R)*J)’y(x,o) = 2[a2(Rq)/a(RY)21Ry=o = function of Rx 

(3 )  
Therefore R and x can occur in  the  solution only t o  the  

extent t h a t  they can be combined as a product. If Cf has 

an expansion i n  terms of the small quantity R-’12, such as 

Cf = R”/“bl(x) + R”b2(x) + (R-3/2 2n R)bsl(x) 

+ R‘3’2b32(~) + . . . as R - l 1 2  + 0 (4) 

and i f  the  term of order R’3’2 2n R as R‘l12 + 0 actual ly  

ex is t s  i n  t h i s  expansion, then b32(X) must contain a term 

proportional t o  xe3/2 2n x, since 

If b32(x) does not contain t h e  t e r m  proportional t o  

xm3l2 2n x, then there  can be no term t o  the  order R-’l2 2n R 

as R +a. Furthermore, if the expansion must, i n  fac t ,  include 

one or  more terms, each containing ’In R t o  some posit ive 

integer power 

w i l l  be indicated by the  presence of the  quantity 

appropriate power i n  t h e  terms involving an appropriate power 

m, then the need fo r  including each such term 

2n x t o  an 

/ 
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of R - l 1 2  i n  Eq. (4) .  If the evaluated function of x 

nul t iplying (R-1/2)n (n 2 0) i n  Eq. (4) contains the term 

x-(1/2)n(tn x ) ~ ,  then, i n  general, there must be terms i n  the 

correct expansion which are constant multiples of each of the 

m + 1 terms on the r i g h t  side of Eq. (6b): 

It should a l so  be noted that, i n  a given problem f o r  which an 

expansion does include log terms as w e l l  as power terms, the 

power terms are  i n  no way affected by the inclusion o r  omission 

of the terms of logarithmic order i n  the assumed form of the 

expansion solution, since the powers and the logs cannot "mix" 

t o  give an order of magnitude which i s  purely a power of the 

small quantity as  it approaches zero. 

In  Ref. 5 the solution is found f o r  R1'2q(~,y;R) = Y(x,Y;R) 

as R 00 holding Y,x, and Y = R112y fixed, by assuming an 

analyt ic  (power series) expansion i n  terms of the s m ~  quantity 

R'l12. 

obtained of which the va l id i ty  cannot be doubted. 

t i ve  terms are not logarithmic with respect t o  

accord'lng tz t h e  ~?s2ove ergm?nts, there can be no terms of 

logarithmic order as 

of the expansion solution (including Eq. ( 2 ) )  is  val id ,  

Self-similar solutions f o r  the respective terms are  

The respec- 

x or  Y and hence, 

R o r  Rx -+ 03. Evidently the analyt ic  form 
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since t h e  problem is completely sa t i s f i ed  by t h a t  form. I n  

R e f .  5 t h e  solution i s  a l so  given i n  terms of t h e  displacement 

var iable  R z  = R, + P2 i n  t h e  form 

Cf = + &.R%-’ + i&Rz -3/2 + . . . ( 7 )  

- (where 

i s  equivalent t o  Eq. (2) with different values f o r  t he  con- 

s t an t s  and which probably converges f o r  a l l  RZ > P2(Rx > 0 ) .  

51 = 0.6641146, a2 = 0,  Z3 = 1.5695, and ii4 = 0 )  which 

The author is  indebted t o  D r .  Max. A. Heaslet of Ames 

Research Center fo r  h i s  encouragement and helpful discussions 

during the  preparation of t h i s  article. 
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